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Abstract. The paper considers theoretically the propagation of weakly nonlinear high-frequency waves in ho-
mogeneous gas-solid suspensions. The governing equations include the equation of particle conservation and the
equation of mean motion of the particles. These equations are supplemented by a barotropic dependence of the
particulate pressure on the particle volume fraction which has a point of maximum (critical point) separating the
regions of increase and decrease of the particulate pressure. Under condition that the particulate gas viscosity is
negligible, the conservation laws represent a system of mixed hyperbolic-elliptic type. It is shown that a uniformly
fluidized bed operated at the critical concentration is unstable with respect to high-frequency sinusoidal oscilla-
tions.
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1. Introduction

Wave propagation in suspensions of particles in fluids has been a subject of extensive studies
for a long time. Various investigations have dealt with long waves of arbitrary amplitude and
small-amplitude waves of arbitrary wavelength.

Long-wave propagation in suspensions during sedimentation was studied first theoretically
by Kynch [1]. He assumed that the mean vertical sedimentation velocity of the particles is
equal to the mean velocity of a uniform suspension where gravity, which drives the motion,
is balanced by the mean drag force exerted by the fluid on the particles. As a result, wave
motion is governed by one nonlinear equation for the particle-volume fractionαs, where the
wave speed is a function ofαs. This is an example of kinematic waves which were studied
thoroughly by Lighthill and Whitham [2]. Comprehensive reviews on this subject were given
by Ganser and Drew [3], Kluwick [4] and Harris and Crighton [5].

Investigations of the behavior of small-amplitude waves deal mainly with the stability of
particle sedimentation. For higher-frequency disturbances, the effect of particle inertia causes
some delay in the adjustment of the mean particle velocity to the rapidly changing local con-
centration. In the limit of high-frequency disturbances, the inertial forces prevail over gravity
and drag force. Such waves are called dynamic waves. If the basic flow is stable, the decay rate
of the disturbances at large times is governed by kinematic waves [2]. On the other hand, if the
basic flow is unstable, the growth of disturbances is determined by dynamic waves (Kluwick
[6]).

Propagation of a small disturbance within a uniform fluidized bed was first calculated by
Jackson [7] using equations of continuity and momentum of the particulate phase. The mo-
mentum equation accounted for gravity, drag force and inertial forces. The analysis revealed
that the state of uniform fluidization is always unstable due to particle inertia.
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Carg and Pritchett [8] showed that it is possible to predict stability limits if particulate
pressure due to particle-particle interactions is taken into account. Batchelor [9] first intro-
duced a specific barotropic equation in the context of the stability analysis relating particulate
pressure to its volume fraction. The equation has a point of maximum (critical point) sep-
arating the regions in which the particulate pressure increases and decreases as the volume
fraction increases. Such equations have recently been experimentally verified by Zenit et al.
[10]. Paper [9] considered the limiting case of disturbances of very high frequency when
gravity, drag force, as well as the effect of particulate gas viscosity are negligible altogether.
For that case the governing equations, including those of particulate continuity and momentum
equations, comprise a system of mixed hyperbolic-elliptic type. These equations are elliptic in
the region where the pressure decreases with increasing density. In this region any perturbation
continues to grow under ensuing pressure drop leading to instability [9]. This paper contains
also a comprehensive survey of works on the stability problem of uniform fluidized beds.

In the hyperbolic region, a uniform fluidized bed may be either stable or unstable, de-
pending on the relevant criterion of stability [9]. Fanucci et al. [11] studied numerically
nonlinear wave propagation in the hyperbolic region using the method of characteristics. They
showed that initially sinusoidal wavetrains may evolve into a shock fronts due to nonlinear
effects. This problem was treated analytically in [6]. In particular, the author considered small-
amplitude high-frequency periodic waves when the particulate inertia, as well as gravity and
drag force are taken into account. It was shown that if the basic flow is unstable, periodic
disturbances approach the form of a constant amplitude saw-tooth non-decaying in time.

Batchelor’s stability analysis of uniformly fluidized beds considers regions far from the
critical point where particle velocity and volume fraction are of the same orders of magnitude.
In the vicinity of the critical point this analysis is invalid (Lammers and Biesheuvel [14]). A
specific goal of the present work is to investigate nonlinear one-dimensional wave propagation
in a homogeneous unconfined fluidized bed near the point of maximum of the dependence
ps = ps(αs) where both the hyperbolic and elliptic regions are important. Near this point
particle velocity and volume fraction are of different orders of magnitude and the perturbation
procedure employed in [9] is no longer applicable. This study is aimed at stability analysis
of a uniformly fluidized bed at a critical concentration and evolution of initially sinusoidal
wavetrains towards some stationary regime which occurs as a result of the instability.

We consider the limiting case of disturbances of very high frequency when gravity and
drag forces are negligible to analyze the evolution and the ultimate form of these wavetrains.
Such analysis is important, since in practice fluidized-bed operation near critical concentration
is attractive for practical applications (see review in [13]).

The paper is organized as follows. A set of equations describing the mean flow of gas-
solid suspensions and a statement of the problem are presented in Section 2. Equations for
small-amplitude high-frequency waves are derived in Section 3. Analytical solutions of these
equations describing steady-state, self-similar and simple waves are considered in Section 4,
together with numerical simulations of small-amplitude periodic wave motions in a uniformly
fluidized-bed resulting in its instability. The discussion and conclusion sections summarize
the results obtained.
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Figure 1. Schematic of a fluidized bed domain with coordinate system.

2. Problem formulation and governing equations

Consider a bed of identical solid particles fluidized in a vertical pipe of constant cross-section
where variations of the field quantities in directions perpendicular to the pipe axis are suffi-
ciently small to be negligible. Thus, a one-dimensional treatment is appropriate. Furthermore,
it is assumed that both gas and solid phases are incompressible. The flow can be adequately
described by governing equations for mixtures proposed in the previous studies (see [9, 13]). It
follows from these equations that the gas and particle conservation equations have an integral

(1− αs)ν
′
g + αsν

′
s = νo = const, (2.1)

whereν′g, ν′s are the gas and particle velocities, respectively,αs is the particle volume fraction
andνo is the average velocity of the suspension. Equation (2.1) enables one to express the
gas velocity in terms of the particle volume fraction and particle velocity allowing the par-
ticle mass and momentum equations to be treated independently. These equations have the
following form

∂αs

∂t ′
+ ∂αsν

′
s

∂y′
= 0, (2.2)

ρosαs

(
∂ν′s
∂t ′
+ ν′s

∂ν′s
∂y′

)
= −∂p

′
s

∂y′
+ nfµ − ρosαsg +

∂

∂y′

(
αsµs

∂ν′s
∂y′

)
, (2.3)

wherey′, t ′ denote the spatial coordinate as measured along the pipe axis (see Figure 1) and
time;ρos is the particle density,p′s is the particulate pressure,n is the particle number density,
fµ is the drag force acting on the particle,g is the gravitational acceleration andµs is the
particulate gas viscosity coefficient. For small particles, shear stresses are, generally, much
smaller than those associated with the particulate pressure (see [14]). We will, therefore,
neglect the terms related to particulate gas viscosity.

Note that one can also employ the one-dimensional fluid momentum equation (seee.g.,
[13]) to analyze the gas motion on the fluidized bed. We may treat this equation separately,
using results obtained from the analysis of Equations (2.2), (2.3), which provide therefore a
sufficiently general model of the fluidized bed.

Equations (2.2), (2.3) are to be closed by a relationship between the particulate pressure and
volume fraction. This particulate pressure is associated with the particle velocity fluctuations
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Figure 2. Dependence of the particulate pressure on the particle volume fraction.

and interparticle collisions. Generally, known approximate kinetic models of dense gases may
be used to determine the equation of state of the particulate suspension and the expression for
particle kinetic energy [15, pp. 87–104]. When the rates of production and dissipation of the
particulate kinetic energy are equal, the particulate pressure and the particle volume fraction
are connected by a barotropic relationship [13]. A particular form of such a phenomenological
relationship, proposed in [9], is used in this paper

p′s = ρosαsU
2
s

αs

αs

(
1− αs

αs

)
, (2.4)

whereαs is the particle volume fraction of the packed bed. This relationship is shown quali-
tatively in Figure 2.Us is the mean particle velocity in a homogeneous fluidized bed given by
the experimental correlation [16]:

Us = νo− ut (1− αs)
γ, (2.5)

whereγ is an empirically determined constant, dependentinter alia on the particle Reynolds
number andut is the terminal velocity of a single particle in a quiescent gas. Note, that if
νo = 0, Us in (2.5) represents the mean velocity of freely precipitating particles. For large
particle Reynolds numberut may be given by the empirical relation

ut =
(

16

3

ρos

ρog
rg

)1/2

, (2.6)

whereρog is the gas density andr is the particle radius. Equation (2.4) describes qualitatively
the dependence of the particulate pressure on the volume fraction, reflecting the most impor-
tant property of the particulate pressure, of vanishing atαs → 0 andαs → αs . The particulate
pressure,p′s, has a maximum atαs = αso where the speed of sound waves in the particulate
gas vanishes, namelyαso/αs = 2

3.
The model employed here is valid only for volume fractions insignificantly different from

αso, i.e., for fluidization regime differing from the packed-bed state and from the situation
whereαs is close to zero. Accordingly, the particulate pressure (2.4) does not reduce to the
hydrostatic pressure for zero fluidization velocity. Therefore, the behavior of the function
p′s(αs) near the pointsαs = αs and alsoαs = 0 and are unimportant for the present study.
Corresponding regions are shown in Figure 2 by dashed lines. Further discussion on this matter
may found in [13] and papers cited therein.

For further analysis we define the following dimensionless variables and parameters

Y = y′g
U2

0

, T = t ′g
U0
, ν = ν′sg

U0
, (2.7)
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whereU0 is a velocity to be specified below. We also defineα = αs/αs, whereα = α0 = 2/3
corresponds to the critical point. Using (2.1), (2.4), (2.5), we may represent Equations (2.2)
and (2.3) in the forms [9]

∂α

∂T
+ ∂αν

∂Y
= 0, (2.8)

∂ν

∂T
+ ν

∂ν

∂Y
+ C(α)

α

∂α

∂Y
=
[
U2

0(ν− νo/U0)
2

u2
t (1− ααs)2γ

− 1

]
, (2.9)

whereC(α) is the square of the dimensionless speed of sound associated with the particle
flow:

C(α) = 1

ρosU
2
0

dp′s
dαs

. (2.10)

System (2.8), (2.9) is identically satisfied by the solution

α = αa = const, ν = νa = Usa

U0
, (2.11)

whereUsa is given by (2.5). At these values the right-hand side of (2.9) vanishes. Therefore,
Equation (2.11) constitutes a steady-state and uniform solution of (2.8), (2.9), corresponding
to that of a homogeneous fluidized bed. Generally,αa 6= α0; however, in some casesαa = α0

(see below). In all cases|αa − α0| � 1.
We study the behavior of small perturbations of the homogeneous solution (2.11) resulting

from an initial conditionα(0, Y ) slightly different fromαa so that

0< ε = max|α(0, Y )− α0| � 1. (2.12)

The problem of evolution of a small perturbation in a homogeneous suspension is treated
in the limit when the dimensionless characteristic time of the disturbance, denoted as�−1 is
very small, i.e.�→∞. The limiting procedure is ordered such that

�−1� ε. (2.13)

In this case Equations (2.8), (2.9) may be significantly simplified before the perturbation
procedure is applied with respect to the small parameterε developed in the next section. In
order to describe the approach of� to infinity, we now define new variables

t = �T, y = �Y, �→∞, (2.14)

Then, Equations (2.8), (2.9) take the form

∂α

∂t
+ ∂αν

∂y
= 0, (2.15)

∂ν

∂t
+ ν

∂ν

∂y
+ C(α)

α

∂α

∂y
= 1

�

[
U2

0(ν− νo/U0)
2

u2
t (1− ααs)2γ

− 1

]
. (2.16)

In the limit�→∞ the terms on the right-hand side in (2.16) become negligible, leading to

∂ν

∂t
+ ν

∂ν

∂y
+ C(α)

α

∂α

∂y
= 0. (2.17)
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The above approximation describes a small-amplitude process occurring so fast that the ef-
fects of gravity and drag force, as expressed by the r.h.s. of (2.16), are negligible. This
approximation is, therefore, valid when

t � �→∞. (2.18)

In particular, Equations (2.15), (2.17) will be used for the analysis of small-amplitude waves
propagating in an initially uniform suspension. We shall also consider steady-state solutions
of these equations in a moving frame which can be understood as asymptotic limits of wavy
motions. Then, a transient time from an initial disturbance to steady-state solutions must sat-
isfy (2.18). For large� unsteady flow patterns can approach their limiting steady-state form.
It should be noted, however, that corresponding steady-state patterns cannot exist for a long
time, because of condition (2.18). The small term neglected on the right-hand side of (2.16),
associated with gravity and drag force, will disturb eventually the steady-state solutions. Thus,
such steady-state solutions may be considered as intermediate asymptotics.

3. Equations for small-amplitude waves in the vicinity of the critical point

The system (2.15), (2.17) supplemented by Equations (2.4), (2.10) was analyzed for stability
of the uniform state (2.11) in [9] in the linear approximation. The author assumed that dis-
turbances of particle volume fraction and velocity are of the same order of magnitude and
showed that wave velocities associated with (2.15), (2.17) areνa ∓ √C(αa). If αa < α0, a
small disturbance propagates with no change of form with the speed of sound in a moving
frame connected withνa. If αa > α0, thenC(α) < 0, implying exponential growth of a non-
propagating disturbance,i.e., instability. At the critical pointαa = α0, where the speed of
sound vanishes, the disturbance is frozen, that is, it moves without change of form together
with the particulate gas withνa. However, near the critical point a nonlinear analysis is nec-
essary to study the wave motion. Here we analyze the behavior of the solution in the vicinity
of the critical point, where, as we will show below, the volume fraction and the velocity
disturbances are of different orders of magnitude.

Assume that in the vicinity ofαa = α0, we may writeC(α) in the form

C(α) =
(

dC(α)

dα

)
α=α0

(α− α0)+O(α− α0)
2. (3.1)

As follows from (2.4), (2.10) dC/dα |α=α0 6= 0. Note that the analysis given below is ap-
plicable to any barotropic process where the pressure-density relationship has a maximum.
Without loss of generality, we choose the characteristic velocityU0 appearing in (2.10) so
that dC/dα |α=α0= −2α0. The characteristic velocityU0 can be calculated explicitly for
each physical situation. As an example, consider 2·5 mm solid particles with the densityρos
exceeding 103 times that of the gas, flowing atν0 = 12 m s−1. Under these conditions the
terminal settling velocity given by (2.6) is 11·43 m s−1, and the mean particle velocity in
the flowing gas, as evaluated from (2.5) withγ = 2·5 is Us = 7·85 m s−1. This yields the
characteristic velocityU0 appearing in (2.7) equal to 9·6 m s−1. With the above expression for
(dC/dα |α=α0 Equation (2.17) takes the form

∂ν

∂t
+ ν

∂ν

∂y
+ 2α0(α0− α)

α

∂α

∂y
= 0. (3.2)
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To determine the orders of magnitude of the flow parameters in the vicinity of the critical
point, we note that Equations (2.15), (2.17) have the simple wave integral relation forα < α0

ν = ±
∫ √

C(α)

α
dα. (3.3)

We show below that, in contrast to Batchelor’s analysis, Equation (3.3) yields thatα andν are
of different orders of magnitude. Towards this goal we substitute

α = α0+ εα1(y, t), α1 ≤ 0, (3.4)

with ε defined in (2.12), and (3.1) in (3.3), linearize aboutα0 and integrate to obtain the
velocity

ν = νa0+ ε3/2ν1, ν1 = ∓
√

2

α0
(−α1)

3/2 (3.5)

whereα1 and ν1 are perturbation solutions of the first order;νa0 is determined by substi-
tution of αa = α0 in (2.11). This result shows that in the vicinity of the maximum point
the perturbation of the velocity scales asO(ε3/2) when the perturbation of the volume frac-
tion scale isO(ε). This is in contrast with the perturbation relationships of Batchelor where
ν − νa = O(ε). Equation (3.5) determines the relationship between disturbances of particle
velocity and particle volume fraction in the simple wave near the critical point.

In order to obtain the solution of (2.15), (3.2), we define the coordinate system attached to
the uniform flow

t = t, ς = y − νat. (3.6)

Then, Equations (2.15), (3.2) become

∂α

∂t
− νa

∂α

∂ς
+ ∂αν

∂ς
= 0, (3.7)

∂ν

∂t
− νa

∂ν

∂ς
+ ν

∂ν

∂ς
+ 2α0(α0− α)

α

∂α

∂ς
= 0. (3.8)

Bearing in mind (3.4), (3.5), we further assume asymptotic expressions of the form

α = α0+ εα1(ς, τ)+O(ε2), τ = √εt, (3.9)

ν = νa0+ ε3/2ν1(ς, τ)+O(ε2)

to hold in the hyperbolic (α1 < 0) and elliptic (α1 > 0) regions, including the critical point.
Hereα1 andν1 are to be determined. Substitute (3.9) in (3.7), (3.8) and rearrange to obtain

∂α1

∂τ
+ α0

∂ν1

∂ς
= 0, (3.10)

∂v1

∂τ
− ∂α

2
1

∂ς
= 0. (3.11)

The initial value problems posed for the system of Equations (3.10), (3.11) are considered in
the next section. Now we note that this system is nonlinear and of mixed type; hyperbolic in
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the regionα1 < 0, and elliptic in the regionα > 0. In the former region the characteristics of
these equations are given by

dς

dτ
= ±√−2α0α1. (3.12)

Defining the velocity potential as

v1 = ∂φ1

∂ς
, (3.13)

We can also represent Equations (3.10), (3.11) in the form

∂α1

∂τ
+ α0

∂2φ1

∂ς2
= 0, (3.14)

∂φ1

∂τ
= α2

1. (3.15)

It should be noted that the system of Equations (3.10), (3.11) is mathematically equivalent to
the purely spatial Karman–Guderley equations considered in the theory of steady transonic
flows (see [17] Chapter 1, 2). It is interesting to note that it appears now in the context of the
description of time-dependent wave-propagation processes.

4. Small-amplitude wave motions near the critical point

In this section we obtain several possible solutions of Equations (3.10), (3.11).

4.1. STEADY-STATE PATTERNS

First consider steady-state solutions of these equations in the following stepwise form

α1 = αθ(ς) = αθ [�(Y − νaT )] , (4.1)

ν1 = 0

which is valid in both elliptic and hyperbolic regions. In the above equationsθ(ς) is Heavi-
side’s function anda is the amplitude of the step which is of the order of unity and

θ(ς) =
{ −1, ς ≤ 0,

1, ς > 0.
(4.2)

This Riemann-type solution describes a frozen symmetrical jump (aboutα0) of the particle
volume fraction which moves without change of form together with the particulate phase
(see Figure 3a). This may occur as a result of instantaneous shifting in the volume fraction
at the inlet of the fluidized bed, includingα0. Such a jump transition is shown by the AA′
line in Figure 2, where point A corresponds to the initial value of the fraction,i.e. αa. The
antisymmetrical jump connects the hyperbolic and elliptic regions.

Equations (3.10), (3.11) have also periodic stationary solutions with any period say, 2π, as
shown in Figure 3b. It is a steady-state square-shape pattern. In the next section we shall show
that such patterns appear as a result of evolution of a sinusoidal disturbance imposed on a
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Figure 3. Steady-state configurations of the particle volume fraction: (a) Single symmetrical jump. (b) Periodical
square-shape pattern.

uniformly fluidized bed atαa = α0. Thus, the period of the steady-state pattern is determined
by the period of disturbances.

4.2. SELF-SIMILAR SOLUTION

The system of Equations (3.10), (3.11) has a self-similar solution in the hyperbolic region (see
[17]). Using the invariance of this system, we can show that it has the following solution

α = −η2/2α0, v = −η3/3α0, (4.3)

whereη = ζ/τ. This solution describes an unsteady rarefaction fan stretching in a finite space
area.

It should be noted that this self-similar solution does not satisfy the limiting process deter-
mined by (2.14), sinceη is independent of�. It therefore does not represent an asymptotic
solution of Equations (2.8), (2.9).

4.3. GENERAL SIMPLE WAVES

We seek a more general solution of Equations (3.10), (3.11) valid in the hyperbolic region,
α1 < 0, assuming that the velocity may be represented as a function of the particle volume
fraction,v1 = v1(α1). Then, Equations (3.10), (3.11) can be rewritten as

∂α1

∂τ
+ α0

dv1

dα1

∂α1

∂ς
= 0, (4.4)

dv1

dα1

∂α1

∂τ
− 2α1

∂α1

∂ς
= 0.

The requirement that (4.4) has nontrivial dependence on(ς, τ) results in Equation (3.5).
Substituting (3.5) in (4.4) yields the wave equation

∂α1

∂τ
±√−2α0α1

∂α1

∂ς
= 0, (4.5)

where the positive sign yields the back-running wave and the negative sign yields the forward-
running wave. Equations (4.5) have implicit solutions

α1 = F(ς±
√−2α0α1τ), (4.6)
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where F is nonpositive but otherwise arbitrary function. Both solutions corresponding to
positive and negative sign in (4.6) stem from an identical disturbance:α1 = F(ς) = F(y)

at τ = 0, yet the first derivatives of the disturbance with respect to time are different for the
back- and the forward-running waves, namely

∂α1

∂τ
= ∓√−2α0F(ς,0)F

′(ς,0). (4.7)

We now consider in more detail the back-running wave caused by an initially sinusoidal
disturbanceα1 = siny = sin�Y in the segment[π,2π]

α1 = sin(ς+√−2α0α1τ) = sin(�Y − νa�T −
√−2α0α1ε�T ). (4.8)

A given value ofα1 moves with the speed
√−2α0α1, so that the sine-wave distorts. A condi-

tion (∂ς/∂α1)τ |α1=0= 0 givesτ = 0. Hence,α1(ς) becomes instantaneously multivalued at
ς = π. In reality a discontinuity occurs at this point. The location of the discontinuity may be
determined by an integral conservation principle resulting from the equal-areas rule (Whitham
[18]). Then, for the jump propagation speed,s, we have

s = −2

3

√−2α0α1+ (4.9)

whereα1+ is the value of the disturbance of the particle volume fraction just behind the jump.
Ahead of the jump the particle volume fraction disturbance vanishes. As a result,α1 turns out
to be single-valued everywhere outside the jump.

Let us define a functionβ asβ = √−2α0α1. Then, Equation (4.5) for the back-running
wave yields

∂β

∂τ
− β

∂β

∂ς
= 0. (4.10)

Equation (4.10) is the inviscid Burgers’ equation with a long-time asymptotic solution
described by a sawtooth wave with a linear wave profile (see [18]). In our caseα1 is equal to
−β2, and the volume-fraction distribution will therefore deviate from the linear one for long
times, attaining a parabolic shape. Note that the wave is damped eventually due to energy
dissipation.

The simple wave solution obtained above describes wave motions which may occur as a
result of a small sinusoidal disturbance in particle density at the inlet of the fluidized bed.
This wave can propagate in the fluidized bed, where the particle volume fraction is smaller
than (however, close to) the critical value. We have seen that such wave behavior differs
qualitatively from that typical for the regions far from the critical point, where evolution of
the sinusoidal disturbance is governed by the inviscid Burgers’ equation.

4.4. INVESTIGATIONS OF SMALL-AMPLITUDE PERIODICAL WAVE MOTIONS

Propagation of non-unidirectional non-simple waves is now studied. We investigate the in-
stability of the fluidized bed atαa = α0 with respect to a sinusoidal disturbance. The goal
of the investigation is to describe the nonlinear evolution of initially sinusoidal wave trains
towards steady-state square-shape patterns (Figure 3b). The initial disturbance is specified by
the equations

α1 = sinς, φ1 = 0 0≤ ς ≤ 2π. (4.11)
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We solve Equations (3.14), (3.15), which constitute a mathematical problem of mixed type.
Specifically, the interval(0,π) corresponds to the elliptic region and the interval(π,2π) - to
the hyperbolic region.

Zeros of the sinusoidal distribution (4.11) correspond to the critical point of the particu-
late pressure density dependence. In the vicinity of this point the pressure gradient vanishes,
provided the particle volume fraction has a spatially anti-symmetric distribution with respect
to ς (see (3.11) or (3.15)). The initial disturbance (4.11) satisfies this condition. Therefore,
periodic solutions can be constructed subject to the condition of zero pressure gradient on the
boundariesς = 0,π,2π. This results in the boundary conditions of impermeability

∂φ1

∂ς
= 0 at ς = 0,π,2π (4.12)

according to which no particles flow through these boundaries. We thus conclude that the
spatial average of the particle fraction does not change in time in each of these intervals.
Eventually, the sinusoidal wavetrain transforms into a square-shape pattern, representing the
steady-state solution. We now determine the height of this pattern resulting from the evolution
of the sine-wave. Evaluating the integral mass equation for the initial disturbance (4.11) and
the steady-state square-shape configuration (see Figure 3b) we obtain the height as equal to
2/π.

One can observe that the initial sinusoidal disturbance (4.11) and stationary square-shape
patternα1 (see Figure 3b) are antisymmetrical with respect toζ. Hence, a continuous solution
of Equation (3.11) implies thatν1 is also antisymmetrical, which clearly contradicts Equation
(3.10). However, we look for a discontinuous solution where at the boundaries of the intervals
ς = 0,π,2π antisymmetric jumps are formed instantaneously which evolve towards their
equilibrium height equal to 2/π. In this case, the second term in Equation (3.11) vanishes at
these boundaries and no contradiction occurs.

Note that in the interval 0≤ ς ≤ π the initial-boundary-value problem is of the elliptic
type. This is a difficult task. Therefore, we focus further attention on the analysis of evolution
of the disturbance in the intervalπ ≤ ς ≤ 2π, corresponding to the hyperbolic region.
Here we use the physical principles of impermeability and mass conservation in the intervals
0 ≤ ς ≤ π andπ ≤ ς ≤ 2π, discussed above, to deduce the eventual steady state in the
elliptic region as well. Note that in place of the problem posed by Equations (3.14), (3.15)
we can analyze stability of the fluidized bed operation by direct numerical simulations of
system (2.15), (2.17) subject to small initial disturbances. This task should apparently meet
with similar computational difficulties when simultaneously integrating in the hyperbolic and
elliptic regions.

Equations (3.14), (3.15), are solved numerically by a finite-difference method subject to
conditions (4.11), (4.12). An explicit scheme is used, where the second derivatives of the
potential are approximated by central differences in internal points. In order to approximate
the boundary conditions (4.12), two additional points of the spatial grid are introduced just
outside the region. The values of the velocity potential at these points are assumed to be equal
to those of the closest internal points.

The result of the calculations are presented below, where the number of the internal points
of the spatial grid is equal to 99. The relationship between the time step,1τ, and the mesh
size of the spatial grid,1ς, is as follows:1τ = 10−3 ·1ς2.

Figure 4 shows distributions of the particle volume fraction at successive ranges ofτ

(τ = 0, 0·5, 1·0) in the inviscid suspension. We have seen that the stationary plateau is
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Figure 4. Non-unidirectional periodical wave motions. Interaction of two modes of the initially sine-wave at
successive rangesτ.

formed in the region at about timeτ = 1·0. This transient time may also be expressed as
T = 1/(�

√
ε). Because of the inequality (2.13), this value satisfies the condition (2.18)

establishing the validity of the limiting process. The obtained configuration corresponds to
the steady-state square-shape pattern with the height 2/π. This pattern develops antisymmet-
rical jumps at the ends of the interval(π,2π). Recalling that such antisymmetrical jumps are
steady-state and bearing in mind the mass conservation law, we conclude that the square-shape
pattern is to be eventually formed in the interval(0,π) also. Thus, the steady-state solution
shown in Figure 3b, represents an intermediate asymptotic solution of Equations (2.15), (2.16)
valid for large frequencies�.

5. Discussions

The result obtained above shows that the uniformly fluidized bed with particle volume fraction
equal to its critical value is unstable with respect to oscillations of very high frequencies. This
fact is related to the influence of the elliptic region which turns out to be more significant
than that of the hyperbolic region. Recall that the purely elliptic disturbance always results
in the instability, while the purely hyperbolic disturbance always decays. This represents a
new kind of instability unreported in previous studies. In particular, Batchelor [9], who first
introduced the barotropic dependence of the particulate pressure on the void fraction in the
context of the stability analysis, did not consider stability in the vicinity of the critical point.
The influence of the more concentrated elliptic region manifests itself also in the formation
of steady-state square-shaped patterns, which occur in our case without any effect of drag
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force and gravity. This differs qualitatively from the case analyzed theoretically in [6], where
an unstable disturbance of high, but finite, frequency in the hyperbolic region, far from the
critical point, is shown to obtain eventually the saw-tooth form with a constant amplitude due
to the small effect of gravity and drag force.

Thus, the present study describes theoretically periodical concentration structures occur-
ring as a result of instability in highly concentrated suspensions. This may be important for
several processes occurring in concentrated fluidized beds.

Observations of the onset of instabilities of such kind and formation of the steady-state
square-shaped patterns represent an important experimental task. Such investigations can,
apparently, be performed by means of experimental techniques as described in [14], where
concentrational waves and instabilities in uniform bubbly fluidized beds are studied. The
latter paper reports experimental results on propagation of small, but finite, amplitude peri-
odic waves, which are in good agreement with classical solutions of the Burgers’ equation,
describing the formation of the decaying saw-tooth waves. Thus, conditions for experimental
observations of the square-shape patterns are readily attainable in experiments.

These studies are also important for further development in investigations of the particulate
pressure-volume fraction dependencies in fluidized beds. As we pointed out briefly in the in-
troduction, Zenit et al. [10] measured the collisional particulate pressure in a uniform fluidized
bed. It was shown, in particular, that the phenomenological dependence of the particulate
pressure on the particle volume fraction as suggested by Batchelor [9], which has a critical
point, is in quantitative agreement with experimental data. It should be noted, however, that
measurements of particulate pressure are based on the assumption of the existence of this
dependence (pressure versus volume-fraction), and show considerable scatter. Observations
of square-shape patterns, predicted theoretically in the present work, could provide indirect
experimental evidence of the applicability of Batchelor’s model.

6. Conclusions

Based on the constitutive equations for gas-solid suspensions, the properties of small-amplitude
waves near the point of maximum of the particulate pressure density dependence are inves-
tigated in the limit of very high frequencies. The main findings of the investigations are as
follows:

– Nonlinear equations describing the wave behavior near the critical point are derived. They
represent a system of conservation laws of hyperbolic-elliptic mixed type. The nonlinearity is
characterized by the term in the particle momentum equation originating from the particulate
pressure gradient and representing a square of the particle volume fraction.

– A steady-state and simple wave solutions are obtained. They describe different wave
motions, which may occur as a result of small changes in the particle density at the inlet of
the fluidized bed.

– Periodic wave motions in the hyperbolic and elliptic regions near the critical point are
studied. Interaction between the two modes of the initial sine-wave of particle concentration
(i.e. propagating up- and downstream) is examined in the context of a stability analysis. It
is shown that the wave transforms into a steady-state square-shape pattern. Such periodic
concentration structures may occur in concentrated fluidized beds. Their further theoretical
and experimental investigation represents, therefore, an important scientific task.
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– The results obtained for small-amplitude waves may be useful for investigating moderate-
amplitude concentration-wave propagation in regions containing the critical point of the par-
ticulate pressure-density dependence.
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